

zope.exceptions documentation

Contents:

	Using zope.exceptions
	Annotating Application Code

	API Functions

	zope.exceptions API documentation
	zope.exceptions.interfaces

	zope.exceptions.exceptionformatter

	Hacking on zope.exceptions
	Getting the Code

	Working in a virtualenv

	Using zc.buildout

	Using tox

	Contributing to zope.exceptions

Indices and tables

	Index

	Module Index

	Search Page

Using zope.exceptions

This module extends the standard library’s traceback [https://docs.python.org/2/library/traceback.html#module-traceback] module, allowing
application code to add additional information to the formatted tracebacks
using specially-named variables in the scope of a given frame.

We will use examples of a rendering function that’s meant to produce
some output given a template and a set of options. But this rendering
function is quite broken and produces a useless exception, so when we
call it we’d like to be able to provide some more contextual information.

>>> import sys
>>> def render(source, options):
... raise Exception("Failed to render")

Annotating Application Code

__traceback_info__

This variable can only be defined at local scope. It will be converted to a
string when added to the formatted traceback.

>>> def render_w_info(template_file, options):
... with open(template_file) as f:
... source = f.read()
... __traceback_info__ = '%s\n\n%s' % (template_file, source)
... render(source, options)

This is convenient for quickly adding context information in an
unstructured way, especially if you already have a string, or an
object with a custom __str__ or __repr__ that provides the
information you need (tuples of multiple such items also work well).
However, if you need to format a string to produce readable
information, as in the example above, this may have an undesirable
runtime cost because it is calculated even when no traceback is
formatted. For such cases, __traceback_supplement__ may be helpful.

__traceback_supplement__

This variable can be defined either at either local or global (module)
scope. Unlike __traceback__info__ this is structured data. It must
consist of a sequence containing a function and the arguments to pass
to that function. At runtime, only if a traceback needs to be
formatted will the function be called, with the arguments, to produce
a supplement object. Because the construction of the object is
delayed until needed, this can be a less expensive way to produce
lots of useful information with minimal runtime overhead.

The formatting functions treat the resulting supplement object as if
it supports the
ITracebackSupplement
interface. The various attributes (all optional) of that interface
will be used to add structured information to the formatted traceback.

For example, assuming your code renders a template:

>>> import os
>>> class Supplement(object):
... def __init__(self, template_file, options):
... self.source_url = 'file://%s' % os.path.abspath(template_file)
... self.options = options
... self.expression = 'an expression'
... def getInfo(self):
... return "Options: " + str(self.options)
>>> def render_w_supplement(template_file, options):
... with open(template_file) as f:
... source = f.read()
... __traceback_supplement__ = Supplement, template_file, options
... render(source, options)

Here, the filename and options of the template will be rendered as part of
the traceback.

Note

If there is an exception calling the constructor function,
no supplement will be formatted, and (by default) the
exception will be printed on sys.stderr.

API Functions

Three API functions support these features when formatting Python
exceptions and their associated tracebacks:

format_exception()

Use this API to format an exception and traceback as a list of strings, using
the special annotations. E.g.:

>>> from zope.exceptions import format_exception
>>> try:
... render_w_info('docs/narr.rst', {})
... except:
... t, v, tb = sys.exc_info()
... report = format_exception(t, v, tb)
... del tb # avoid a leak
... # Now do something with report, e.g., send e-mail.
>>> print('\n'.join(report))
Traceback (most recent call last):

 Module <doctest default[1]>, line 2, in <module>
 render_w_info('docs/narr.rst', {})

 Module <doctest default[0]>, line 5, in render_w_info
 - __traceback_info__: docs/narr.rst
...

print_exception()

Use this API to write the formated exception and traceback to a file-like
object, using the special annotations. E.g.:

>>> from zope.exceptions import print_exception
>>> try:
... render_w_supplement('docs/narr.rst', {})
... except:
... t, v, tb = sys.exc_info()
... print_exception(t, v, tb, file=sys.stdout)
... del tb # avoid a leak
Traceback (most recent call last):
 File "<doctest default[1]>", line 2, in <module>
 render_w_supplement('docs/narr.rst', {})
 File "<doctest default[2]>", line 5, in render_w_supplement
 - file:///...
 - Expression: an expression
Options: {}
 File "<doctest default[1]>", line 2, in render
 render_w_supplement('docs/narr.rst', {})
Exception: Failed to render

extract_stack()

Use this API to format just the traceback as a list of string,s using the
special annotations. E.g.:

>>> import sys
>>> from zope.exceptions import extract_stack
>>> try:
... raise ValueError('demo')
... except:
... for line in extract_stack(sys.exc_info()[2].tb_frame):
... pass # do something with each line

zope.exceptions API documentation

zope.exceptions.interfaces

ITracebackSupplement

zope.exceptions.exceptionformatter

format_exception()

print_exception()

extract_stack()

Hacking on zope.exceptions

Getting the Code

The main repository for zope.exceptions is in the Zope Foundation
Github repository:

https://github.com/zopefoundation/zope.exceptions

You can get a read-only checkout from there:

$ git clone https://github.com/zopefoundation/zope.exceptions.git

or fork it and get a writeable checkout of your fork:

$ git clone git@github.com/jrandom/zope.exceptions.git

The project also mirrors the trunk from the Github repository as a
Bazaar branch on Launchpad:

https://code.launchpad.net/zope.exceptions

You can branch the trunk from there using Bazaar:

$ bzr branch lp:zope.exceptions

Working in a virtualenv

Installing

If you use the virtualenv package to create lightweight Python
development environments, you can run the tests using nothing more
than the python binary in a virtualenv. First, create a scratch
environment:

$ /path/to/virtualenv --no-site-packages /tmp/hack-zope.exceptions

Next, get this package registered as a “development egg” in the
environment:

$ /tmp/hack-zope.exceptions/bin/python setup.py develop

Running the tests

Run the tests using the build-in setuptools testrunner:

$ /tmp/hack-zope.exceptions/bin/python setup.py test -q
running test
...---
--
Ran 72 tests in 0.017s

OK

If you have the nose package installed in the virtualenv, you can
use its testrunner too:

$ /tmp/hack-zope.exceptions/bin/easy_install nose
...
$ /tmp/hack-zope.exceptions/bin/python setup.py nosetests
running nosetests
..
--
Ran 73 tests in 0.010s

OK

or:

$ /tmp/hack-zope.exceptions/bin/nosetests
..
--
Ran 73 tests in 0.011s

OK

If you have the coverage pacakge installed in the virtualenv,
you can see how well the tests cover the code:

$ /tmp/hack-zope.exceptions/bin/easy_install nose coverage
...
$ /tmp/hack-zope.exceptions/bin/python setup.py nosetests \
 --with coverage --cover-package=zope.exceptions
running nosetests
...
...
Name Stmts Miss Cover Missing
--
zope.exceptions 10 0 100%
zope.exceptions.exceptionformatter 171 0 100%
zope.exceptions.interfaces 18 0 100%
zope.exceptions.log 13 0 100%
--
TOTAL 212 0 100%
--

OK

Building the documentation

zope.exceptions uses the nifty Sphinx documentation system
for building its docs. Using the same virtualenv you set up to run the
tests, you can build the docs:

$ /tmp/hack-zope.exceptions/bin/easy_install Sphinx
...
$ cd docs
$ PATH=/tmp/hack-zope.exceptions/bin:$PATH make html
sphinx-build -b html -d _build/doctrees . _build/html
...
build succeeded.

Build finished. The HTML pages are in _build/html.

You can also test the code snippets in the documentation:

$ bin/sphinx-build -b docs/doctest -d docs/_build/doctrees docs docs/_build/doctest
...
12 tests in 1 items.
12 passed and 0 failed.
Test passed.

Doctest summary
===============
 12 tests
 0 failures in tests
 0 failures in setup code
build succeeded.
Testing of doctests in the sources finished, look at the \
 results in _build/doctest/output.txt.

Using zc.buildout

Setting up the buildout

zope.exceptions ships with its own buildout.cfg file and
bootstrap.py for setting up a development buildout:

$ /path/to/python2.6 bootstrap.py
...
Generated script '.../bin/buildout'
$ bin/buildout
Develop: '/home/jrandom/projects/Zope/BTK/exceptions/.'
...
Generated script '.../bin/sphinx-quickstart'.
Generated script '.../bin/sphinx-build'.

Running the tests

Run the tests:

$ bin/test --all
Running zope.testing.testrunner.layer.UnitTests tests:
 Set up zope.testing.testrunner.layer.UnitTests in 0.000 seconds.
 Ran 2 tests with 0 failures and 0 errors in 0.000 seconds.
Tearing down left over layers:
 Tear down zope.testing.testrunner.layer.UnitTests in 0.000 seconds.

Using tox

Running Tests on Multiple Python Versions

tox [http://tox.testrun.org/latest/] is a Python-based test automation
tool designed to run tests against multiple Python versions. It creates
a virtualenv for each configured version, installs the current package
and configured dependencies into each virtualenv, and then runs the
configured commands.

zope.exceptions configures the following tox environments via
its tox.ini file:

	The py26, py27, py33, py34, and pypy environments
builds a virtualenv with pypy,
installs zope.exceptions and dependencies, and runs the tests
via python setup.py test -q.

	The coverage environment builds a virtualenv with python2.6,
installs zope.exceptions, installs
nose and coverage, and runs nosetests with statement
coverage.

	The docs environment builds a virtualenv with python2.6, installs
zope.exceptions, installs Sphinx and
dependencies, and then builds the docs and exercises the doctest snippets.

This example requires that you have a working python2.6 on your path,
as well as installing tox:

$ tox -e py26
GLOB sdist-make: .../zope.interface/setup.py
py26 sdist-reinst: .../zope.interface/.tox/dist/zope.interface-4.0.2dev.zip
py26 runtests: commands[0]
...---
--
Ran 72 tests in 0.000s

OK
___________________________________ summary ____________________________________
py26: commands succeeded
congratulations :)

Running tox with no arguments runs all the configured environments,
including building the docs and testing their snippets:

$ tox
GLOB sdist-make: .../zope.interface/setup.py
py26 sdist-reinst: .../zope.interface/.tox/dist/zope.interface-4.0.2dev.zip
py26 runtests: commands[0]
...
Doctest summary
===============
 12 tests
 0 failures in tests
 0 failures in setup code
 0 failures in cleanup code
build succeeded.
___________________________________ summary ____________________________________
py26: commands succeeded
py27: commands succeeded
py32: commands succeeded
pypy: commands succeeded
coverage: commands succeeded
docs: commands succeeded
congratulations :)

Contributing to zope.exceptions

Submitting a Bug Report

zope.exceptions tracks its bugs on Github:

https://github.com/zopefoundation/zope.exceptions/issues

Please submit bug reports and feature requests there.

Sharing Your Changes

Note

Please ensure that all tests are passing before you submit your code.
If possible, your submission should include new tests for new features
or bug fixes, although it is possible that you may have tested your
new code by updating existing tests.

If have made a change you would like to share, the best route is to fork
the Githb repository, check out your fork, make your changes on a branch
in your fork, and push it. You can then submit a pull request from your
branch:

https://github.com/zopefoundation/zope.exceptions/pulls

If you branched the code from Launchpad using Bazaar, you have another
option: you can “push” your branch to Launchpad:

$ bzr push lp:~jrandom/zope.exceptions/cool_feature

After pushing your branch, you can link it to a bug report on Launchpad,
or request that the maintainers merge your branch using the Launchpad
“merge request” feature.

Index

 nav.xhtml

 Table of Contents

 		zope.exceptions documentation

 		Using zope.exceptions

 		Annotating Application Code

 		__traceback_info__

 		__traceback_supplement__

 		API Functions

 		format_exception()

 		print_exception()

 		extract_stack()

 		zope.exceptions API documentation

 		zope.exceptions.interfaces

 		ITracebackSupplement

 		zope.exceptions.exceptionformatter

 		format_exception()

 		print_exception()

 		extract_stack()

 		Hacking on zope.exceptions

 		Getting the Code

 		Working in a virtualenv

 		Installing

 		Running the tests

 		Building the documentation

 		Using zc.buildout

 		Setting up the buildout

 		Running the tests

 		Using tox

 		Running Tests on Multiple Python Versions

 		Contributing to zope.exceptions

 		Submitting a Bug Report

 		Sharing Your Changes

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

